Abstract

BackgroundThrombolytic therapy with tissue plasminogen activator (tPA) benefits patients with acute ischemic stroke. However, tPA increases the risk for intracerebral bleeding and enhances post-ischemic neuronal injury if administered 3-4 hours after stroke. Therefore, combination therapies with tPA and neuroprotective agents have been considered to increase tPA's therapeutic window and reduce toxicity. The anticoagulant factor protein S (PS) protects neurons from hypoxic/ischemic injury. PS also inhibits N-methyl-D-aspartate (NMDA) excitotoxicity by phosphorylating Bad and Mdm2 which blocks the downstream steps in the intrinsic apoptotic cascade. To test whether PS can protect neurons from tPA toxicity we studied its effects on tPA/NMDA combined injury which in contrast to NMDA alone kills neurons by activating the extrinsic apoptotic pathway. Neither Bad nor Mdm2 which are PS's targets and control the intrinsic apoptotic pathway can influence the extrinsic cascade. Thus, based on published data one cannot predict whether PS can protect neurons from tPA/NMDA injury by blocking the extrinsic pathway. Neurons express all three TAM (Tyro3, Axl, Mer) receptors that can potentially interact with PS. Therefore, we studied whether PS can activate TAM receptors during a tPA/NMDA insult.ResultsWe show that PS protects neurons from tPA/NMDA-induced apoptosis by suppressing Fas-ligand (FasL) production and FasL-dependent caspase-8 activation within the extrinsic apoptotic pathway. By transducing neurons with adenoviral vectors expressing the kinase-deficient Akt mutant AktK179A and a triple FKHRL1 Akt phosphorylation site mutant (FKHRL1-TM), we show that Akt activation and Akt-mediated phosphorylation of FKHRL1, a member of the Forkhead family of transcription factors, are critical for FasL down-regulation and caspase-8 inhibition. Using cultured neurons from Tyro3, Axl and Mer mutants, we show that Tyro3, but not Axl and Mer, mediates phosphorylation of FHKRL1 that is required for PS-mediated neuronal protection after tPA/NMDA-induced injury.ConclusionsPS blocks the extrinsic apoptotic cascade through a novel mechanism mediated by Tyro3-dependent FKHRL1 phosphorylation which inhibits FasL-dependent caspase-8 activation and can control tPA-induced neurotoxicity associated with pathologic activation of NMDA receptors. The present findings should encourage future studies in animal stroke models to determine whether PS can increase the therapeutic window of tPA by reducing its post-ischemic neuronal toxicity.

Highlights

  • Thrombolytic therapy with tissue plasminogen activator benefits patients with acute ischemic stroke

  • Potential combination therapies with tissue plasminogen activator (tPA) and neuroprotective agents hold potential to increase the therapeutic window of tPA and reduce its toxic effects in brain associated with pathologic activation of N-methyl-D-aspartate receptor (NMDAR)

  • Because tPA/NMDA exposure has been shown to trigger caspase-8-dependent cell death [14], we explored whether protein S (PS) attenuates tPA/NMDAinduced toxicity by blocking the extrinsic apoptotic pathway

Read more

Summary

Introduction

Thrombolytic therapy with tissue plasminogen activator (tPA) benefits patients with acute ischemic stroke. A recent study using a model of angiographically documented recanalization of the rabbit middle cerebral artery occlusion has indicated that tPA produces bleeding at all doses in proportion to its thrombolytic potential [9] These side effects limit use of tPA therapy in humans with stroke [10,11]. It has been reported that tPA enhances the neurotoxic effects of NMDA downstream to NMDARs by shifting the NMDA-induced neuronal injury from the intrinsic to the extrinsic apoptotic pathway [14].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call