Abstract

The crystal packing surfaces comprising protein-RNA interactions were analyzed for 50 RNA-protein crystal structures in the Protein Data Bank database. Protein-RNA crystal contacts, which represent nonspecific protein-RNA interfaces, were investigated for their amino acid propensities, hydrogen bond patterns, and backbone and side chain interactions. When compared to biologically relevant interactions, the protein-RNA crystal contacts exhibit similarities as well as differences with respect to the principles of protein-RNA interactions. Similar to what was observed at cognate protein-RNA interfaces, positively charged amino acids have high propensities at noncognate protein-RNA interfaces and preferentially form hydrogen bonds with RNA phosphate groups. In contrast, nonpolar residues are less frequently associated with noncognate interactions. These results highlight the important roles of both electrostatic and hydrogen bonding interactions, facilitated by positively charged amino acids, in mediating both specific and nonspecific protein-RNA interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.