Abstract
The present study investigated the associations between frailty status and (a) daily protein intake, (b) daily body weight-adjusted protein intake, (c) branched-chain amino acid (BCAA) consumption, (d) evenness of protein distribution across main meals, (e) number of daily meals providing at least 30 g of protein, and (f) number of daily meals providing at least 0.4 g protein/kg of body weight in community-dwelling older adults. The relationship between frailty status and protein-related dietary parameters was explored across different frailty assessment tools. Two hundred older adults were enrolled in the study. Participant frailty status was determined according to a modified Fried’s frailty phenotype (mFP), the FRAIL scale, and the Study of Osteoporotic Fracture (SOF) index. Diet was assessed by 24-h dietary recall, while diet composition was estimated using a nutritional software. A frailty instrument-dependent relationship was observed between frailty status and protein-related dietary parameters. Protein consumption was associated with frailty status only in participants identified as frail according to the mFP. In addition, protein and BCAA intake was found to be greater in robust and pre-frail participants relative to their frail counterparts. Our findings suggest that the association between frailty and protein-related dietary parameters is tool dependent. Specifically, protein and BCAA consumption appears to be lower only in older adults identified as frail by the mFP.
Highlights
Frailty is a highly prevalent condition in older adults [1] and is defined as a state of increased vulnerability to negative health-related outcomes, which occurs as a result of multisystem derangements and poor social support [2,3,4]
The present study investigated the relationship among frailty status, which was assessed by three different screening tools, i.e., a modified frailty phenotype (FP), Study of Osteoporotic Fracture (SOF) and FRAIL, and (a) daily protein consumption, (b) daily body weight-adjusted protein consumption, (c) daily branched-chain amino acid (BCAA) intake, (d) evenness of protein distribution across the three main meals, (e) number of daily meals providing at least 30 g of protein, and (f) number of daily meals providing at least 0.4 g of protein/kg of body weight in a convenience sample of community-dwelling older persons
The prevalence of frailty was 15.5% according to the modified Fried’s frailty phenotype (mFP), 23.0% using the SOF index, and 26.0% according to the FRAIL scale
Summary
Frailty is a highly prevalent condition in older adults [1] and is defined as a state of increased vulnerability to negative health-related outcomes, which occurs as a result of multisystem derangements and poor social support [2,3,4]. Substantial agreement exists on the theoretical construct of frailty, its clinical implementation is hampered by the lack of an unequivocal operational definition. This impasse is reflected by the existence of numerous instruments for frailty assessment, and each of these identifies only partially overlapping phenotypes [7,8].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.