Abstract

Computer simulations are performed on a system of eight model peptide chains to study how the competition between protein refolding and aggregation affects the optimal conditions for refolding of four-helix bundles. The discontinuous molecular dynamics algorithm is utilized along with an intermediate-resolution protein model that we developed for this work. Physically, the model is much more detailed than any model used to date for simulations of protein aggregation. Each model residue consists of a detailed, three-bead backbone and a simplified, single-bead side-chain. Excluded volume, hydrogen bond, and hydrophobic interactions are modeled with discontinuous (i.e. hard-sphere and square-well) potentials. Simulations efficiently sample conformational space, and complete folding trajectories from random initial configurations to two four-helix bundles are possible within two days on a single processor workstation. Folding of the bundles follows two main pathways, one through a trimeric intermediate and the other through an intermediate with two dimers. The proportion of trajectories that follow each route is significantly different for the eight-peptide system in this work than in a previously studied four-peptide system, which yields one four-helix bundle, suggesting, as our previous simulations have, that protein folding properties are strongly influenced by the presence of other proteins. Folding of the bundles is optimal within a fixed temperature range, with the high-temperature boundary a function of the complexity of the protein (or oligomer) to be folded and the low-temperature boundary a function of the complexity of the protein’s environment. Above the optimal temperature range for folding, the model chains tend to unfold; below the optimal range, the model chains tend to aggregate. As has been seen previously, aggregates have substantial levels of native secondary structure, suggesting that aggregates are composed largely of partially folded intermediates, not denatured chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call