Abstract

Motile bacteria employ sophisticated chemotaxis signal transduction systems to transform environmental cues into corresponding behavioural responses. The proteins involved in this signalling pathway have been extensively studied on a molecular level in various model organisms, including enterobacteria and Bacillus subtilis, and specific protein-protein interactions have been identified. The chemotaxis operon of spirochaetes encodes a novel chemotaxis protein, CheX, in addition to homologues to the central components of established chemotaxis systems. Interestingly, the closest functionally characterized homologue of CheX is CheC of the complex B. subtilis chemotaxis pathway. In this study, the yeast two-hybrid system was applied to investigate protein-protein interactions within the chemotaxis signalling pathway of Treponema denticola, with special focus on CheX. CheX was found to interact with CheA and with itself. The other chemotaxis proteins exhibited interactions comparable to their homologues in known chemotaxis systems. Based on these findings, a model integrating CheX in the chemotaxis signal transduction pathway of T. denticola is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call