Abstract
The computational methods of protein-protein interaction sites prediction can effectively avoid the shortcomings of high cost and time in traditional experimental approaches. However, the serious class imbalance between interface and non-interface residues on the protein sequences limits the prediction performance of these methods. This work therefore proposed a new strategy, NearMiss-based under-sampling for unbalancing datasets and Random Forest classification (NM-RF), to predict protein interaction sites. Herein, the residues on protein sequences were represented by the PSSM-derived features, hydropathy index (HI) and relative solvent accessibility (RSA). In order to resolve the class imbalance problem, an under-sampling method based on NearMiss algorithm is adopted to remove some non-interface residues, and then the random forest algorithm is used to perform binary classification on the balanced feature datasets. Experiments show that the accuracy of NM-RF model reaches 87.6% and 84.3% on Dtestset72 and PDBtestset164 respectively, which demonstrate the effectiveness of the proposed NM-RF method in differentiating the interface or non-interface residues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.