Abstract

The T4 DNA polymerase holoenzyme is composed of the polymerase enzyme complexed to the sliding clamp (the 45 protein), which is loaded onto DNA by an ATP-dependent clamp loader (the 44/62 complex). This paper describes a new method to directly investigate the mechanism of holoenzyme assembly using a fluorescently labeled cysteine mutant of the 45 protein. This protein possessed unaltered function yet produced substantial changes in probe fluorescence intensity upon interacting with other components of the holoenzyme. These fluorescence changes provide insight into the role of ATP hydrolysis in holoenzyme assembly. Using either ATP or the non-hydrolyzable ATP analog, adenosine 5'-O-(3-thiophosphate), events in holoenzyme assembly were assigned as either dependent or independent of ATP hydrolysis. A holoenzyme assembly mechanism is proposed in which the 44/62 complex mediates the association of the 45 protein with DNA in an ATP-dependent manner not requiring ATP hydrolysis. Upon ATP hydrolysis, the 44/62 complex triggers a conformational change in the 45 protein that may be attributed to the clamp loading onto DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.