Abstract

BackgroundPenicillium marneffei is a pathogenic fungus that afflicts immunocompromised individuals having lived or traveled in Southeast Asia. This species is unique in that it is the only dimorphic member of the genus. Dimorphism results from a process, termed phase transition, which is regulated by temperature of incubation. At room temperature, the fungus grows filamentously (mould phase), but at body temperature (37°C), a uninucleate yeast form develops that reproduces by fission. Formation of the yeast phase appears to be a requisite for pathogenicity. To date, no genes have been identified in P. marneffei that strictly induce mould-to-yeast phase conversion. In an effort to help identify potential gene products associated with morphogenesis, protein profiles were generated from the yeast and mould phases of P. marneffei.ResultsWhole cell proteins from the early stages of mould and yeast development in P. marneffei were resolved by two-dimensional gel electrophoresis. Selected proteins were recovered and sequenced by capillary-liquid chromatography-nanospray tandem mass spectrometry. Putative identifications were derived by searching available databases for homologous fungal sequences. Proteins found common to both mould and yeast phases included the signal transduction proteins cyclophilin and a RACK1-like ortholog, as well as those related to general metabolism, energy production, and protection from oxygen radicals. Many of the mould-specific proteins identified possessed similar functions. By comparison, proteins exhibiting increased expression during development of the parasitic yeast phase comprised those involved in heat-shock responses, general metabolism, and cell-wall biosynthesis, as well as a small GTPase that regulates nuclear membrane transport and mitotic processes in fungi. The cognate gene encoding the latter protein, designated RanA, was subsequently cloned and characterized. The P. marneffei RanA protein sequence, which contained the signature motif of Ran-GTPases, exhibited 90% homology to homologous Aspergillus proteins.ConclusionThis study clearly demonstrates the utility of proteomic approaches to studying dimorphism in P. marneffei. Moreover, this strategy complements and extends current genetic methodologies directed towards understanding the molecular mechanisms of phase transition. Finally, the documented increased levels of RanA expression suggest that cellular development in this fungus involves additional signaling mechanisms than have been previously described in P. marneffei.

Highlights

  • Penicillium marneffei is a pathogenic fungus that afflicts immunocompromised individuals having lived or traveled in Southeast Asia

  • Experimental rationale Cultures of P. marneffei incubated in Sabouraud dextrose broth at 25°C and 37°C exhibited distinct morphological differences within 24 hours that became pronounced upon further incubation (Fig. 1)

  • Both types of morphological development were replicated on solid media, the difference being that the mould phase of P. marneffei formed typical conidiophores bearing chains of ovoid conidia (Fig. 1A)

Read more

Summary

Introduction

Penicillium marneffei is a pathogenic fungus that afflicts immunocompromised individuals having lived or traveled in Southeast Asia. This species is unique in that it is the only dimorphic member of the genus. In vitro incubation of mould cultures at 37°C (body temperature) results in the production of yeast cells that divide by fission. When the in vitro derived yeast cells are subsequently incubated at 25°C, the mould phase is regenerated These observations confirm the dimorphic nature of P. marneffei, and demonstrate that this conversion process is thermally regulated much like that of other fungal pathogens [17]. P. marneffei represents the only known dimorphic species among the Penicillia [12,13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.