Abstract
Accurate measurement of trace compounds in blood samples is important in clinical diagnosis and life science. Ambient ionization mass spectrometry, however, suffers from the matrix effect when dealing with complex samples such as blood. Therefore, it is important to reduce the matrix effects in blood samples. A low-cost and disposable Teflon tube was used as a platform to precipitate the protein in blood. The analytes are extracted into organic solvent, and the precipitated protein can be adsorbed by the chromatography paper inserted. Therefore, the Teflon tube after precipitation can be directly subjected to paper spray ionization mass spectrometry, achieving one-step analysis of blood. High sensitivity and satisfactory stability were achieved for pharmaceuticals, acids, and endogenic metabolites in blood. The absolute signal intensities of characteristic product ions of the tested analytes were 8-20 times higher after protein precipitation than those obtained using paper spray. Detection limits and quantitative performance were evaluated for three drugs: carbamazepine, metformin, and tioconazole. In addition, the limits of detection and quantitation were improved 9-14- and 8-12-fold, respectively. Protein precipitation coupled to paper spray with a tube and then to mass spectrometry was successfully achieved and applied in the one-step analysis of trace compounds in blood samples. The experimental results showed that this method was sensitive, stable, convenient, and economic for the direct analysis of blood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.