Abstract

Post-translational modifications play a critical role in regulating protein function. Increasingly, determination of protein identity, estimation of abundance, and characterization of post-translational modifications are required for analysis of protein-mediated cell signaling networks. As such, we report an integrated and rapid multispectral immunoprobed isoelectric focusing technique for identifying specific proteins bearing post-translational modifications. Immunoprobed isoelectric focusing is composed of isoelectric focusing in a large pore-size polyacrylamide gel to determine protein pI followed by immobilization of pI-resolved proteins. Proteins are immobilized via covalent attachment to a channel-filling benzophenone-functionalized polyacrylamide gel via brief UV exposure (photoblot), followed by multispectral antibody-based detection. The assay correlates observed post-translational modifications to pI shifts relative to the unmodified protein of interest. During the electrokinetically driven antibody probing stage, we observed nonuniform electrophoretic probe mobility along the channel axis. The spatially varying mobility is attributed to nonuniform charge arising from covalent attachment of ampholytes to the benzophenone-functionalized gel matrix during the photoblotting step. Using the multistep microfluidic assay, phosphorylated and acetylated forms of heat shock protein 27 and superoxide dismutase 2 were detected, respectively. The assay reported protein isoforms in immune-purified sample and raw cell lysate in 2 hours with sample volume requirements of 2 μL. This new assay is well-matched to systems biology frameworks for study of protein post-translational modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.