Abstract

Biocompatible adsorbents play an essential role in hemoperfusion. Nevertheless, there are no hemoperfusion adsorbents that can simultaneously remove small and medium toxins, including bilirubin, urea, phosphor, heavy metals, and antibiotics. This bottleneck significantly impedes the miniaturization and portability of hemoperfusion materials and devices. Herein, a biocompatible protein-polysaccharide complex is reported that exhibits "multi-in-one" removal efficacy for liver and kidney metabolism wastes, toxic metal ions, and antibiotics. Through electrostatic interactions and polysaccharide-mediated coacervation, adsorbents can be prepared by simply mixing lysozyme (LZ) and sodium alginate (SA) together in seconds. The LZ/SA absorbent presented high adsorption capacities for bilirubin, urea, and Hg2+ of up to 468, 331, and 497mgg-1 , respectively, and the excellent anti-protein adsorption endowed LZ/SA with a record-high adsorption capacity for bilirubin in the interference of serum albumin to simulate the physiological environment. The LZ/SA adsorbent also has effective adsorption capacity for heavy metals (Pb2+ , Cu2+ , Cr3+ , and Cd2+ ) and multiple antibiotics (terramycin, tetracycline, enrofloxacin, norfloxacin, roxithromycin, erythromycin, sulfapyrimidine, and sulfamethoxazole). Various adsorption functional groups exposed on the adsorbent surface significantly contribute to the excellent adsorption capacity. This fully bio-derived protein/alginate-based hemoperfusion adsorbent has great application prospects in the treatment of blood-related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.