Abstract

An axial-connecting trimer of the porphyrin phosphorus(V) complex was synthesized to evaluate the relaxation process of the photoexcited state and the photosensitizer activity. The photoexcitation energy was localized on the central unit of the phosphorus(V)porphyrin trimer. The photoexcited state of the central unit was relaxed through a process similar to that of the monomer phosphorus(V)porphyrin. The excited state of this axially connected type of phosphorus(V)porphyrin trimer was not deactivated through intramolecular electron transfer. The singlet oxygen generation quantum yield of the trimer was almost the same as that of the monomer. The phosphorus(V)porphyrin, trimer, and monomer bound to human serum albumin and oxidized the tryptophan residue via singlet oxygen generation and electron transfer during visible light irradiation. The photocytotoxicity of these phosphorus(V)porphyrins on two cell lines was examined. The monomer induced photocytotoxicity; however, the trimer did not show cytotoxicity with or without photoirradiation. In summary, the photoexcited state of the trimer was almost the same as that of the monomer, and these phosphorus(V)porphyrins demonstrated a similar protein-photodamaging activity. The difference in association between the photosensitizer molecules and cells is the key factor of phototoxicity by these phosphorus(V)porphyrins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call