Abstract

Adenosine signaling via A1 receptor (A1R) and A2A receptor (A2AR) has shown promise in revealing potential targets for neuroprotection in cerebral ischemia. We recently showed a novel mechanism by which A1R activation with N6-cyclopentyl adenosine (CPA) induced GluA1 and GluA2 AMPA receptor (AMPAR) endocytosis and adenosine-induced persistent synaptic depression (APSD) in rat hippocampus. This study further investigates the mechanism of A1R-mediated AMPAR internalization and hippocampal slice neuronal damage through activation of protein phosphatase 1 (PP1), 2A (PP2A), and 2B (PP2B) using electrophysiological, biochemical and imaging techniques. Following prolonged A1R activation, GluA2 internalization was selectively blocked by PP2A inhibitors (okadaic acid and fostriecin), whereas inhibitors of PP2A, PP1 (tautomycetin), and PP2B (FK506) all prevented GluA1 internalization. Additionally, GluA1 phosphorylation at Ser831 and Ser845 was reduced after prolonged A1R activation in hippocampal slices. PP2A inhibitors nullified A1R-mediated downregulation of pSer845-GluA1, while PP1 and PP2B inhibitors prevented pSer831-GluA1 downregulation. Each protein phosphatase inhibitor also blunted CPA-induced synaptic depression and APSD. We then tested whether A1R-mediated changes in AMPAR trafficking and APSD contribute to hypoxia-induced neuronal injury. Hypoxia (20 min) induced A1R-mediated internalization of both AMPAR subunits, and subsequent normoxic reperfusion (45 min) increased GluA1 but persistently reduced GluA2 surface expression. Neuronal damage after hypoxia-reperfusion injury was significantly blunted by pre-incubation with the above protein phosphatase inhibitors. Together, these data suggest that A1R-mediated protein phosphatase activation causes persistent synaptic depression by downregulating GluA2-containing AMPARs; this previously undefined role of A1R stimulation in hippocampal neuronal damage represents a novel therapeutic target in cerebral ischemic damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call