Abstract

BackgroundProtein phosphatases are the key components of a number of signaling pathways where they modulate various cellular responses. In plants, protein phosphatases constitute a large gene family and are reportedly involved in the regulation of abiotic stress responses and plant development. Recently, the whole complement of protein phosphatases has been identified in Arabidopsis genome. While PP2C class of serine/threonine phosphatases has been explored in rice, the whole complement of this gene family is yet to be reported.ResultsIn silico investigation revealed the presence of 132-protein phosphatase-coding genes in rice genome. Domain analysis and phylogenetic studies of evolutionary relationship categorized these genes into PP2A, PP2C, PTP, DSP and LMWP classes. PP2C class represents a major proportion of this gene family with 90 members. Chromosomal localization revealed their distribution on all the 12 chromosomes, with 42 genes being present on segmentally duplicated regions and 10 genes on tandemly duplicated regions of chromosomes. The expression profiles of 128 genes under salinity, cold and drought stress conditions, 11 reproductive developmental (panicle and seed) stages along with three stages of vegetative development were analyzed using microarray expression data. 46 genes were found to be differentially expressing in 3 abiotic stresses out of which 31 were up-regulated and 15 exhibited down-regulation. A total of 82 genes were found to be differentially expressing in different developmental stages. An overlapping expression pattern was found for abiotic stresses and reproductive development, wherein 8 genes were up-regulated and 7 down-regulated. Expression pattern of the 13 selected genes was validated employing real time PCR, and it was found to be in accordance with the microarray expression data for most of the genes.ConclusionsExploration of protein phosphatase gene family in rice has resulted in the identification of 132 members, which can be further divided into different classes phylogenetically. Expression profiling and analysis indicate the involvement of this large gene family in a number of signaling pathways triggered by abiotic stresses and their possible role in plant development. Our study will provide the platform from where; the expression pattern information can be transformed into molecular, cellular and biochemical characterization of members belonging to this gene family.

Highlights

  • Protein phosphatases are the key components of a number of signaling pathways where they modulate various cellular responses

  • When analyzed for the presence of conserved domains employing SMART and InterPro, we found that 10 of these were devoid of any and/or phosphatase domain, 131 protein phosphatases were confirmed by this approach

  • Similar analysis using InterPro showed the presence of PP domain (PTP_DSPc) in one (OsPP62) of the 14 genes

Read more

Summary

Introduction

Protein phosphatases are the key components of a number of signaling pathways where they modulate various cellular responses. Plants have evolved complex molecular mechanisms by which they adapt and tolerate these adverse growth conditions When they perceive stress sensor-relay, sensor-responders, and effectors and the target proteins such as transcription factors, transporters and channel proteins have been implicated in plant stress response. Reversible protein phosphorylation mediated by protein kinases and protein phosphatases is a major event in signal transduction, regulating many biological processes including cell cycle events, growth factor response, hormone and other environmental stimuli, metabolic control and developmental events [1,2,3,4,5,6]. The addition or removal of a phosphate group to or from an enzyme either activates or deactivates the enzyme effectively In this manner, protein kinases and phosphatases play a critical role in controlling the activity of an enzyme and, as a result, regulate the biochemical process in which the enzyme participates

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.