Abstract

Protein acid/base constants, or p Ka's are often computed from Monte Carlo or molecular dynamics simulations at a series of constant pH values. Instead, we propose to adaptively flatten the free energy landscape in the space of protonation states. The flattening is achieved by a Wang-Landau Monte Carlo, where a bias potential is constructed adaptively during an initial phase, such that all protonation states achieve comparable probabilities. Biased ensembles of states are then reweighted by subtracting out the bias and adding a pH-dependent free energy term. Titration curves constructed for three test proteins agreed, within the small numerical uncertainty, with those obtained earlier from the constant-pH approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.