Abstract

Exposure of proteins to oxidants leads to increased oxidation followed by preferential degradation by the proteasomal system. The role of the biologically occurring oxidants singlet oxygen and peroxynitrite in oxidation of proteins in living cells and enhanced degradation of these proteins was examined in this study. Subsequent to treatment of an isolated model protein, ferritin, with singlet oxygen or peroxynitrite, there was enhanced degradation by the isolated 20S proteasome. Treatment of clone 9 liver cells (normal liver epithelia) with two different singlet oxygen-generating systems or peroxynitrite leads to a concentration-dependent increase in cellular protein turnover. At high concentrations of these oxidants, the protein turnover decreases without significant loss of cell viability and proteasome activity. To compare the increase of intracellular protein turnover with that obtained with other oxidants, cells were exposed to hydrogen peroxide or xanthine/xanthine oxidase. The maximal increase in protein turnover was similar with the various oxidants. The oxidized protein moieties were removed by enhanced protein turnover. Removal of singlet oxygen- or peroxynitrite-damaged proteins is dependent on the proteasomal system, as suggested by the sensitivity to lactacystin. Our results provide evidence that the proteasomal system is able to selectively recognize and degrade proteins modified by singlet oxygen or peroxynitrite in vitro as well as in living cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call