Abstract

BackgroundThe E. coli pET system is the most widely used protein over-expression system worldwide. It relies on the assumption that all cells produce target protein and it is generally believed that integral membrane protein (IMP) over-expression is more toxic than their soluble counterparts.ResultsUsing GFP-tagged proteins, high level over-expression of either soluble or IMP targets results in > 99.9% cell loss with survival rate of only < 0.03%. Selective pressure generates three phenotypes: large green, large white and small colony variants. As a result, in overnight cultures, ~ 50% of the overall cell mass produces no protein. Genome sequencing of the phenotypes revealed genomic mutations that causes either the loss of T7 RNAP activity or its transcriptional downregulation. The over-expression process is bactericidal and is observed for both soluble and membrane proteins.ConclusionsWe demonstrate that it is the act of high-level over-expression of exogenous proteins in E. coli that sets in motion a chain of events leading to > 99.9% cell death. These results redefine our understanding of protein over-production and link it to the adaptive survival response seen in the development of antimicrobial resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.