Abstract

Protein O-mannosylation, originally observed in fungi, starts at the endoplasmic reticulum with the transfer of mannose from dolichyl activated mannose to seryl or threonyl residues of secretory proteins. This reaction is catalyzed by a family of protein O-mannosyltransferases (PMTs), which were first characterized in Saccharomyces cerevisiae. The identification of this evolutionarily conserved PMT gene family has led to the finding that protein O-mannosylation plays an essential role in a number of physiologically important processes. Focusing on the PMT gene family, we discuss here the main aspects of the biogenesis of O-linked carbohydrate chains in S. cerevisiae, Candida albicans, and other fungi. We summarize recent work utilizing pmt mutants that demonstrates the impact of protein O-mannosylation on protein secretion, on maintenance of cell wall integrity, and on budding. Further, the occurrence of PMT orthologs in higher eukaryotes such as Arabidopsis, Drosophila and mammals is reported and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.