Abstract

Currently marketed influenza vaccines only confer protection against matching influenza virus strains. The influenza A composition of these vaccines needs to be annually updated. Vaccines that target conserved epitopes of influenza viruses would in principle offer broad cross-protection against influenza A viruses. In our study, we investigated the specific immune responses and protective efficacy of protein nanoparticles based on fusion proteins of flagellin carrier linked to conserved influenza epitopes. We designed fusion proteins by replacing the hyperimmunogenic region of flagellin (FliC) with four tandem copies of the ectodomain of matrix protein 2 (f4M2e), H1 HA2 domain (fHApr8) or H3 HA2 domain (fHAaichi). Protein nanoparticles fabricated from these fusion proteins by using DTSSP crosslinking retained Toll-like receptor 5 agonist activity of FliC. Intranasal immunization with f4M2e, f4M2e/fHApr8 or f4M2e/fHAaichi nanoparticles induced vaccine antigen-specific humoral immune responses. It was also found that the incorporation of the H1 HA2 domain into f4M2e/fHApr8 nanoparticles boosted M2e specific antibody responses. Immunized mice were fully protected against lethal doses of virus challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.