Abstract

Abstract Soy flour adhesives using a polyamidoamine-epichlorohydrin (PAE) polymeric coreactant are used increasingly as wood adhesives for interior products. Although these adhesives give good performance, higher bond strength under wet conditions is desirable. Wet strength is important for accelerated tests involving the internal forces generated by the swelling of wood and plasticization of the adhesive with increasing humidity. Soy proteins are globular due to their hydrophobicity; thus, it was expected that adding modifiers to open the protein structure should improve protein–protein and protein–wood interactions to help withstand both internal and external forces applied to the bond. Because modifiers have been shown to improve the performance of soy protein isolate adhesives, use of these modifiers has been examined as a way to improve soy flour adhesives. Protein-disrupting chaotropic agents (urea, guanidine hydrochloride, and dicyandiamide), surfactants (sodium dodecyl sulfate or cetyltrimethylammonium bromide), and the cosolvent propylene glycol were all expected to provide increased protein–protein and protein–PAE interactions. Improved interactions would make the soy flour adhesives durable enough to better pass wet bond strength tests specified for most interior bonded wood products. However, no substantial improvement was seen in cured wood bond strengths in wet conditions for soy flour adhesives by adding any of these modifiers with or without PAE polymer addition. These results led to a proposal that carbohydrates, about 45 percent by weight of soy flour, are interfering with obtaining greater adhesive bond strengths from the protein portion of the flour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.