Abstract

Advanced Maillard adducts, such as N epsilon-(carboxymethyl)lysine and N epsilon-(carboxyethyl)lysine, can be formed efficiently in vitro from both peroxidation of polyunsaturated fatty acids and glycolysis intermediates. In an attempt to differentiate the in vivo influence of the two pathways in these modifications, Wistar rats were chronically fed with specially designed diets rich in saturated or unsaturated fats. The degree of fatty acid unsaturation of all analysed organs (liver, kidney, brain) was altered by these dietary stresses. Protein glycoxidative and lipoxidative modifications were measured by GC/MS. In accordance with fatty acid profiles, concentrations of N epsilon-(malondialdehyde)lysine in these tissues were significantly increased in animals fed the unsaturated fat diet. In contrast, N epsilon-(carboxymethyl)lysine and N epsilon-(carboxyethyl)lysine concentrations were strongly dependent on the tissue analysed; although the unsaturated fat diet increased their levels significantly in brain, levels were unchanged in kidney and decreased in liver. These later results could be interpreted on the basis that polyunsaturated fatty acids decrease the expression of several glycolytic enzymes in liver. Globally, these data suggest that tissue-specific metabolic characteristics play a key role in the degree of cellular protein modification by Maillard reactions, e.g. by modulation of the concentration of glycolysis intermediates or via specific defensive systems in these organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.