Abstract

The multi-domain architecture of many human proteins provides a structural basis for the physical maintenance of interactomes, or networks of protein-protein interactions (PPIs), that are so obviously crucial to cellular functions. Moreover, the structural and electrostatic complementarity provided by PPI interfaces, predominantly located on protein surfaces, is a fundamental component of signal transduction events that are known to be compromised in human diseases including many cancers.The pharmacokinetic advantages provided by cell-penetrating peptides (CPPs) are entirely compatible with the development of intrinsically permeable agents capable of modulating intracellular PPIs. Thus, the term bioportide is a useful descriptor of numerous bioactive CPPs that are distinct from the more usual inert CPP vectors. Herein we illustrate a generic strategy, predominantly centered upon the identification of cationic peptides derived from helical protein domains, which offers a reliable platform to identify bioportides capable of modulating intracellular signal transduction events. In addition, we describe robust methodologies to determine the precise intracellular distribution of fluorescent bioportides and present assays routinely employed to screen for the detrimental pharmacodynamic properties often exhibited by both CPPs and bioportides; namely adverse cytotoxicity and the receptor-independent stimulation of mast cell secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.