Abstract

Modular hip implants are a clinically successful and widely used treatment for patients with arthritis. Despite ongoing retrieval studies the understanding of the fundamental physico-chemical mechanisms of friction and wear within the head-taper interface is still limited. Here, we Raman-spectroscopically analyze structural features of the biotribological material which is formed within the taper joint between Ti6Al4V and low-carbon cobalt alloy or high-nitrogen steel surfaces in in vitro gross-slip fretting corrosion tests with bovine calf serum. As a function of the fretting duration, we investigate short and long aliphatic chains and their adsorption behavior on the cobalt- and steel-type surfaces. Using the intensity and frequency shifts of the amide I and III Raman bands, we furthermore identify progressive protein folding and unfolding including the secondary structures of α-helix, β-sheet, and random-coil configuration as well as the formation of proteinaceous clusters depending on the hydrophilicity of the metallic surfaces. We additionally find a mixture of chromates and iron oxides with tryptophan and tyrosine at the worn cobalt alloy and high-nitrogen steel surfaces, respectively. Also, for long fretting duration, sp2 hybridized amorphous carbon is formed due to fretting-induced cleavage of proteins. Statement of significanceDespite efforts enhancing the biomedical tribology of hip implants, the impact of the organic environment on friction&wear at the femoral head-stem taper interface is limitedly understood. Using Raman spectroscopy we resolve structural changes within the biotribological material agglomerated at biomedical-grade metal alloys due to organo-metallic interactions during in vitro fretting corrosion tests. Adsorption of short and long aliphatic chains, progressive protein (un)folding and proteinaceous cluster formation depend to a distinguishable extent on the fretting duration and type of alloy. Chromates and iron oxides are mixed with tryptophan and tyrosine, and amorphous carbon is formed resulting from a fretting-induced cleavage of serum proteins. Such information spectroscopically gleaned from biotribological material are vital to improve the design and performance of taper junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.