Abstract

The effects of chronic ethanol feeding on the small intestine were investigated in young rats. Rats were fed a nutritionally-adequate liquid diet, containing 36 per cent of total energy as ethanol (treated, n = 7), or isovolumetric amounts of the same diet in which ethanol was substituted by isocaloric glucose (controls, n = 7). After six weeks the wet weight and total tissue contents of protein, RNA and DNA were significantly reduced by 21 per cent, 23 per cent, 16 per cent and 28 per cent respectively, (p less than 0.014). Rates of protein synthesis were measured with L[4(3H)]phenylalanine and fractional rates (defined as the percentage of constituent tissue protein synthesised each hour, i.e. ks, % h-1) were calculated from the specific radioactivity of free phenylalanine in both tissue homogenates and plasma. Ethanol-feeding reduced ks by approx 10 per cent (p less than 0.181). The amount of protein synthesized unit-1 RNA was also reduced by approx 15 per cent (p less than 0.059) but the amount of protein synthesis unit-1 DNA was unaffected by ethanol-feeding (p less than 1.000). In contrast, the absolute rates of protein synthesis were reduced by approximately 30 per cent (p less than 0.022). It was concluded that, as the small intestine contributes to approx. 20-25 per cent of whole body synthesis these results may have an important effect on whole body nitrogen homeostasis and may have implications for the gastrointestinal effects of ethanol seen during chronic alcoholic abuse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call