Abstract

The use of predesigned bioengineered proteins for self-grown nanomaterials is a promising strategy that opens new scientific directions for biotic-abiotic nano-bio hybrid configurations. The unique properties of nanomaterials can alter the original biological paradigm to allow novel metabolic routes or new activation triggers. In this work, we present a synthetic methodology for self-grown cadmium sulfide quantum dots in a 12-mer bioengineered stable protein 1 under ambient conditions. The sized controlled crystalline QDs are characterized and utilized for NADPH regeneration that is in turn used for the activation of the imine reductase enzyme. The presented nano-bio hybrid system enables the production of a single enantiomeric product that is required for the pharmaceutical industry. Our designed system presents superior activity and can continuously operate for at least 22 hrs with 82 % conversion efficiency. The obtained results may lay the foundations for future nano-bio hybrid systems that can operate both in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.