Abstract

Mechanical unfolding of the fourth domain of Distyostelium discoideum filamin (DDFLN4) was studied by all-atom molecular dynamics simulations, using the GROMOS96 force field 43a1 and the simple point charge explicit water solvent. Our study reveals an important role of non-native interactions in the unfolding process. Namely, the existence of a peak centered at the end-to-end extension DeltaR approximately 22 nm in the force-extension curve is associated with breaking of non-native hydrogen bonds. Such a peak has been observed in experiments but not in Go models, where non-native interactions are neglected. We predict that an additional peak occurs at DeltaR approximately 2 nm using not only GROMOS96 force field 43a1 but also Amber 94 and OPLS force fields. This result would stimulate further experimental studies on elastic properties of DDFLN4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.