Abstract

BackgroundScavenger receptor class B type I (SR-BI) plays a key role in high density lipoproteins (HDL) metabolism. SR-BI deficiency in mice results in enhanced susceptibility to atherosclerosis with abnormal large, cholesterol enriched, and functional impaired HDL. This study was to characterize the protein markers of dysfunctional HDL in SR-BI deficient (SR-BI−/−) mice and to test if the defective of HDL might be affected by probucol treatment.MethodsShotgun proteomics and 2-D gel electrophoresis were performed to examine the profile of HDL protein and distribution of HDL particles isolated from SR-BI−/− mice. HDL’s cell-function, paraoxonase 1 (PON1) and myeloperoxidase activity were assessed. The mice were treated with 1.2 mg/g/day probucol for 6 weeks and the impact on HDL protein markers was analyzed. The differential proteins were quantified by Western blotting.ResultsThe relative amount of protein in SR-BI−/− HDL was decreased by about 25% compared to that in HDL from wild type (WT) mice. Compared to WT HDL, relative protein abundance of representative apoAI and PON1 in SR-BI−/− HDL were significantly reduced, whereas acute-phase protein serum amyloid A (SAA) and apoAIV, proteinase inhibitor proteins α-1-antitrypsin (A1AT) were increased. The distribution of plasma apoAI-containing HDL particles in SR-BI−/− mice was also dramatically altered, although plasma apoAI level was no difference. The protein alterations were accompanied with dysfunction of SR-BI−/− HDL, evidenced by impaired cholesterol homeostasis in macrophages, and reduced anti-oxidative and anti-inflammatory effects. Probucol treatment of SR-BI−/− mice could restored the relative contents of critical proteins including apoAI, PON1, SAA, apoAIV and A1AT on HDL, and improve HDL dysfunction despite decreased HDL-C level.ConclusionSR-BI deficiency leading to dysfunctional HDL is closely related to alteration of HDL protein, suggesting that identification of apoAI, PON1, SAA, apoAIV, and A1AT may serve as the valuable protein markers for diagnosis and therapeutics of dysfunctional HDL-related metabolic diseases.

Highlights

  • Scavenger receptor class B type I (SR-BI) plays a key role in high density lipoproteins (HDL) metabolism

  • Lipid and protein contents in SR‐BI−/− HDL HDLs isolated from wild type (WT) (SR-BI+/+) and SR-BI−/− mice by ultracentrifugation were analyzed for the composition of lipids and proteins

  • free cholesterol (FC) content increased to 20.90% by 3.7-fold as compared with only 4.42% FC in SR-BI+/+ HDL, and total cholesterol (TC) content increased from 18.83% (SR-BI+/+ HDL) to 29.11% (SR-BI−/− HDL); while phospholipid content was not significantly altered

Read more

Summary

Introduction

Scavenger receptor class B type I (SR-BI) plays a key role in high density lipoproteins (HDL) metabolism. Nearly half of cardiovascular clinical events occurred in subjects with normal or even high levels of HDL-C [3]; and clinical trials with drugs that raised HDL-C levels by cholesteryl ester transfer protein (CETP) inhibitors, had failed to reduce the risk of cardiovascular events [4]. These controversial findings suggest that HDL-associated functional factors, instead the levels of HDL-C, are important for the antiatherogenic properties. The assessment of dysfunctional HDL by measuring the protein composition, and the identification of biomarkers of dysfunctional HDL in different experimental models, will provide important information for the evaluation of cardiovascular risk in patients and for the development of new antiatherogenic therapies [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call