Abstract

Recent studies on the interactions of soluble proteins, membrane proteins and enzymes with phospholipid model membranes are reviewed. Similarities between the properties of such systems and the behavior of biomembranes, such as alterations in the redox potential of cytochrome c after binding to membranes and effects of phospholipid fluidity on (Na+K) ATPase activity, are emphasized. The degree of correspondence between the behavior of model systems and natural membranes encourages the continuing use of model membranes in studies on protein-lipid interactions. However, some of the data on the increase of surface pressure of phospholipid monolayers by proteins and increases in the permeability of liposomes indicate that many soluble proteins also have a capability to interact hydrophobically with phospholipids. Thus a sharp distinction between both peripheral and integral membrane proteins and non-membrane proteins are not seen by these techniques. Cautious use of such studies, however, should lead to greater understanding of the molecular basis of cell membrane structure and function in normal and pathological states. Studies implicating protein-lipid interactions and (Na+K) ATPase activity in membrane alterations in disease states are also briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.