Abstract

BackgroundOver the past decade our laboratory has focused on understanding how soluble cytoskeleton-associated proteins interact with membranes and other lipid aggregates. Many protein domains mediating specific cell membrane interactions appear by fluorescence microscopy and other precision techniques to be partially inserted into the lipid bilayer. It is unclear whether these protein-lipid-interactions are dependent on shared protein motifs or unique regional physiochemistry, or are due to more global characteristics of the protein.ResultsWe have developed a novel computational program that predicts a protein's lipid-binding site(s) from primary sequence data. Hydrophobic labeling, Fourier transform infrared spectroscopy (FTIR), film balance, T-jump, CD spectroscopy and calorimetry experiments confirm that the interfaces predicted for several key cytoskeletal proteins (alpha-actinin, Arp2, CapZ, talin and vinculin) partially insert into lipid aggregates. The validity of these predictions is supported by an analysis of the available three-dimensional structural data. The lipid interfaces predicted by our algorithm generally contain energetically favorable secondary structures (e.g., an amphipathic alpha-helix flanked by a flexible hinge or loop region), are solvent-exposed in the intact protein, and possess favorable local or global electrostatic properties.ConclusionAt present, there are few reliable methods to determine the region of a protein that mediates biologically important interactions with lipids or lipid aggregates. Our matrix-based algorithm predicts lipid interaction sites that are consistent with the available biochemical and structural data. To determine whether these sites are indeed correctly identified, and whether use of the algorithm can be safely extended to other classes of proteins, will require further mapping of these sites, including genetic manipulation and/or targeted crystallography.

Highlights

  • Over the past decade our laboratory has focused on understanding how soluble cytoskeleton-associated proteins interact with membranes and other lipid aggregates

  • At present, there are few reliable methods to determine the region of a protein that mediates biologically important interactions with lipids or lipid aggregates

  • Soluble proteins may associate with membranes through welldefined structural domains

Read more

Summary

Introduction

Over the past decade our laboratory has focused on understanding how soluble cytoskeleton-associated proteins interact with membranes and other lipid aggregates. Many protein domains mediating specific cell membrane interactions appear by fluorescence microscopy and other precision techniques to be partially inserted into the lipid bilayer. It is unclear whether these protein-lipid-interactions are dependent on shared protein motifs or unique regional physiochemistry, or are due to more global characteristics of the protein. Soluble proteins may associate with membranes through welldefined structural domains (e.g., pleckstrin-homology, PX (phox), C2, amphipathic helices and/or unstructured motifs that interact through non-specific electrostatic and (page number not for citation purposes).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.