Abstract

To elucidate how the protein-ligand docking structure affects electronic interactions in the electron-transfer process, we have analyzed time-resolved electron paramagnetic resonance spectra of photoinduced charge-separated (CS) states generated by light excitation of 9,10-anthraquinone-1-sulfonate (AQ1S(-)) bound to human serum albumin at a hydrophobic drug-binding region. The spectra have been explained in terms of the triplet-triplet electron spin polarization transfer model to determine both the geometries and the exchange couplings of the CS states of AQ1S(2-•)-histidine-242 radical cation (H242(+•)) and AQ1S(2-•)-tryptophan-214 radical cation (W214(+•)). For the CS state of the former, it has been revealed that, due to the orthogonal relationship between the singly occupied molecular orbitals of AQ1S(2-•) and H242(+•), the electronic coupling (5.4 cm(-1)) is very weak, contributing to the prevention of energy-wasting charge recombination, even at a contact edge-to-edge separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.