Abstract

Binding/unbinding kinetics are key determinants of drug potencies. However, there are still a lot of challenges in predicting kinetic properties during early-stage drug development. In this work, position-restrained molecular dynamics simulations combined with energy decomposition were applied to extract protein-ligand interaction (PLI) fingerprints along the unbinding pathway of 20 p38 mitogen-activated protein kinase (p38 MAPK) Type II inhibitors. The results showed that the electrostatic and/or van der Waals interaction fingerprints at three key positions can be used for accurate prediction of the dissociation rate constants (koff) of p38 MAPK Type II inhibitors. The strategy proposed in this paper can provide not only an efficient method of predicting the dissociation rates of the p38 MAPK Type II inhibitors, but also the atom-level mechanism of enthalpy-driven unbinding process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.