Abstract

Considerable experimental evidence has been produced recently that shows that in the binding of oxygen or carbon monoxide to certain tetrameric hemoglobins, the triply-ligated species is virtually non-existent. The binding polynomial representing this phenomenon for the general case is P(x) = 1 + beta 1x + ... + beta n-1xn-1 + beta nxn, where beta n-1 is nearly zero. The zeros, factorization and associated Hill plots of such binding polynomials with beta n-1 = 0 are investigated for the general case, and are analyzed in detail for n = 3 and n = 4. These results are then compared with the results obtained from experimental data on a number of tetrameric hemoglobins for which beta 3 is small. One concludes that, apart from the slope of the high-saturation asymptote of the Hill plot, a small perturbation of beta 3 from zero produces small changes in other properties associated with the binding process, such as fractional saturation, maximum Hill slope, and zeros and factorization of the binding polynomial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call