Abstract

The calculation of binding affinities for flexible ligands has hitherto required the availability of reliable molecular mechanics parameters for the ligands, a restriction that can in principle be lifted by using a mixed quantum mechanics/molecular mechanics (QM/MM) representation in which the ligand is treated quantum mechanically. The feasibility of this approach is evaluated here, combining QM/MM with the Poisson-Boltzmann/surface area model of continuum solvation and testing the method on a set of 47 benzamidine derivatives binding to trypsin. The experimental range of the absolute binding energy (DeltaG = -3.9 to -7.6 kcal/mol) is reproduced well, with a root-mean-square (RMS) error of 1.2 kcal/mol. When QM/MM is applied without reoptimization to the very different ligands of FK506 binding protein the RMS error is only 0.7 kcal/mol. The results show that QM/MM is a promising new avenue for automated docking and scoring of flexible ligands. Suggestions are made for further improvements in accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.