Abstract

Accurate prediction of protein-ligand binding affinity is crucial in structure-based drug design but remains some challenges even with recent advances in deep learning: (1) Existing methods neglect the edge information in protein and ligand structure data; (2) current attention mechanisms struggle to capture true binding interactions in the small dataset. Herein, we proposed SEGSA_DTA, a SuperEdge Graph convolution-based and Supervised Attention-based Drug-Target Affinity prediction method, where the super edge graph convolution can comprehensively utilize node and edge information and the multi-supervised attention module can efficiently learn the attention distribution consistent with real protein-ligand interactions. Results on the multiple datasets show that SEGSA_DTA outperforms current state-of-the-art methods. We also applied SEGSA_DTA in repurposing FDA-approved drugs to identify potential coronavirus disease 2019 (COVID-19) treatments. Besides, by using SHapley Additive exPlanations (SHAP), we found that SEGSA_DTA is interpretable and further provides a new quantitative analytical solution for structure-based lead optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.