Abstract

Methods that allow for labeling of proteins cotranslationally within protein expression systems have had wide-ranging applications in health, engineering, and medicine. Bioorthogonal chemistries that allow for conjugation of proteins or biomolecules of interest to substrates (fluorophores, gold nanoparticles, polymers, etc.) in living cells without prior enrichment or purification have likewise enabled advances in technology to study and engineer cellular and biomolecular systems. At the intersection of these, chemoenzymatic labeling of proteins at specific sites of interest and their subsequent selective bioconjugation to substrates without prior purification has dramatically streamlined workflows that allow proteins to reside in the native expression volumes as long as possible prior to conjugation, be readily isolated upon conjugation, and remain functionally active after conjugation. Here we present methods and protocols to express and label proteins of interest at the N-terminus with azide derivatives of myristic acid, a small, soluble, 14-carbon fatty acid, and conjugate the labeled protein to fluorophores and gold nanoparticle substrates. These methods can be extended to label proteins with other myristoyl derivatives and to conjugation to other solid or polymeric substrates of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.