Abstract

BackgroundThe mammalian cyclic guanosine monophosphate (cGMP)-dependent protein kinases type II (PKG II) plays critical physiological or pathological functions in different tissues. However, the biological effects of PKG II are dependent on cGMP. Published data indicated that L-arginine (L-Arg) promoted NO production, NO can activate soluble guanylate cyclase (sGC), and catalyzes guanosine triphosphate (GTP) into cGMP, which suggested L-Arg could activate PKG II. Therefore, the present work was performed to address: (i) whether L-Arg could be a potential alternative in PKG II activation, and (ii) whether L-Arg also contributes to PKG II against cancer.Material/MethodsNude BALB/c mice were inoculated with human MCF-7, HepG2, and SW480 cell lines via subcutaneous (s.c.) injecting. After 7 days of inoculation, Ad-PKG II was injected into the cancer tissues every 4 days, and the next day 10 μmol/mouse L-Arg was administered. Western blotting and immunohistochemistry were used to assess protein expression.ResultsOur results demonstrated that L-Arg significantly activated PKG II and effectively ameliorated xenograft tumor development through inhibiting cancer growth, angiogenesis, and metastasis, which was partially dependent on blocking of epidermal growth factor receptor (EGFR) activity, as well as downstream signaling pathways such as Erk1/2.ConclusionsOur results provide an exciting new insight: L-Arg is a potential alternative to PKG II activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.