Abstract

BackgroundThis study investigates whether protein kinase G (PKG), protein kinase A (PKA) and protein kinase C (PKC) are involved in the regulatory mechanisms of store-operated channel (SOC) in pulmonary arteries.MethodsPulmonary artery smooth muscle cells (PASMCs) were enzymatically dissociated from rat intralobar pulmonary arteries. Whole cell, cell-attached and inside-out patch-clamp electrophysiology were used to monitor SOCs in isolated PASMCs.ResultsInitially the Ca2+-ATPase inhibitor cyclopiazonic acid (CPA, 10 μM) initiated a whole cell current that was reduced by the SOC blocker SKF-96365 (10 μM). Subsequent work using both cell-attached and whole cell configurations revealed that the PKG and PKA inhibitors, KT5823 (3 μM) and H-89 (10 μM), also stimulated SOC activity; this augmentation was attenuated by the SOC blockers SKF-96365 (10 μM) and Ni2+ (0.1 mM). Finally using the inside-out configuration, the PKC activator phorbol 12-myristate 13-acetate (PMA, 10 μM) was confirmed to modestly stimulate SOC activity although this augmentation appeared to be more substantial following the application of 10 μM inositol 1,4,5-triphosphate (Ins(1,4,5)P3).ConclusionsSOC activity in PASMCs was stimulated by the inhibition of PKG and PKA and the activation of PKC. Our findings suggest that the SOC could be a substrate of these protein kinases, which therefore would regulate the intracellular concentration of calcium and pulmonary arteriopathy via SOC.

Highlights

  • This study investigates whether protein kinase G (PKG), protein kinase A (PKA) and protein kinase C (PKC) are involved in the regulatory mechanisms of store-operated channel (SOC) in pulmonary arteries

  • cyclopiazonic acid (CPA) evoked whole cell currents in rat pulmonary artery smooth muscle cell (PASMC) Our investigation of SOCs in PASMCs first began by monitoring the whole cell currents evoked by CPA

  • We extended the idea that both the NO-cGMP-protein kinase G and cAMP-protein kinase A signaling pathways effectively regulate SOCs by demonstrating that PKG and PKA inhibition (KT5823 and H-89, respectively) augment single channel activity in PASMCs

Read more

Summary

Introduction

This study investigates whether protein kinase G (PKG), protein kinase A (PKA) and protein kinase C (PKC) are involved in the regulatory mechanisms of store-operated channel (SOC) in pulmonary arteries. Less documented manner, SOCs have been coupled to the genesis of pulmonary vascular tone and pulmonary artery smooth muscle cell (PASMC) proliferation [6]. Given their functional importance and their role in severe pulmonary arteriopathies, there is considerable interest in defining how SOCs are regulated in PASMCs [7].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.