Abstract

Immunotherapy targeting PD-L1 is still ineffective for a wide variety of tumors with high unpredictability. Deploying combined immunotherapy with alternative targeting is practical to overcome this therapeutic resistance. Here, the deficiency of serine-threonine kinase STK24 is observed in tumor cells causing substantial attenuation of tumor growth in murine syngeneic models, a process relying on cytotoxic CD8+ T and NK cells. Mechanistically, STK24 in tumor cells associates with and directly phosphorylates AKT at Thr21, which promotes AKT activation and subsequent PD-L1 induction. Deletion or inhibition of STK24, by contrast, blocks IFN-γ-mediated PD-L1 expression. Various murine models indicate that in vivo silencing of STK24 can significantly enhance the efficacy of the anti-PD-1 blockade strategy. Elevated STK24 levels are observed in patient specimens in multiple tumor types and inversely correlated with intratumoral infiltration of cytotoxic CD8+ T cells and with patient survival. The study collectively identifies STK24 as a critical modulator of antitumor immunity, which engages in AKT and PD-L1/PD-1 signaling and is a promising target for combined immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call