Abstract

BackgroundEndoplasmic reticulum (ER) stress is considered one of the mechanisms contributing to reactive oxygen species (ROS)- mediated cell apoptosis. In diabetic cardiomyopathy (DCM), cell apoptosis is generally accepted as the etiological factor and closely related to cardiac ROS generation. ER stress is proposed the link between ROS and cell apoptosis; however, the signaling pathways and their roles in participating ER stress- induced apoptosis in DCM are still unclear.MethodsIn this study, we investigated the signaling transductions in ROS- dependent ER stress- induced cardiomocyte apoptosis in animal model of DCM. Moreover, in order to clarify the roles of IRE1 (inositol - requiring enzyme-1), PERK (protein kinase RNA (PKR)- like ER kinase) and ATF6 (activating transcription factor-6) in conducting apoptotic signal in ROS- dependent ER stress- induced cardiomocyte apoptosis, we further investigated apoptosis in high- glucose incubated cardiomyocytes with IRE1, ATF6 and PERK- knocked down respectively.Resultswe demonstrated that the ER stress sensors, referred as PERK, IRE1 and ATF6, were activated in ROS- mediated ER stress- induced cell apoptosis in rat model of DCM which was characterized by cardiac pump and electrical dysfunctions. The deletion of PERK in myocytes exhibited stronger protective effect against apoptosis induced by high- glucose incubation than deletion of ATF6 or IRE in the same myocytes. By subcellular fractionation, rather than ATF6 and IRE1, in primary cardiomyocytes, PERK was found a component of MAMs (mitochondria-associated endoplasmic reticulum membranes) which was the functional and physical contact site between ER and mitochondria.ConclusionsROS- stimulated activation of PERK signaling pathway takes the major responsibility rather than IRE1 or ATF6 signaling pathways in ROS- medicated ER stress- induced myocyte apoptosis in DCM.

Highlights

  • Endoplasmic reticulum (ER) stress is considered one of the mechanisms contributing to reactive oxygen species (ROS)- mediated cell apoptosis

  • Animal grouping and treatment 40 rats were randomly assigned into 4 groups: control group (Ctrl, n = 10); N- acetylcysteine (NAC) group (NAC, n = 10); diabetic cardiomyopathy group (DCM, n = 10) and DCM treated with NAC group (DCM + NAC, n = 10)

  • The ventricular arrhythmic events (VAEs) of rats were recorded by ECG, as demonstrated in Figure 2, significantly increased number of VAEs was observed in DCM compared with Ctrl and NAC

Read more

Summary

Introduction

Endoplasmic reticulum (ER) stress is considered one of the mechanisms contributing to reactive oxygen species (ROS)- mediated cell apoptosis. In diabetic cardiomyopathy (DCM), cell apoptosis is generally accepted as the etiological factor and closely related to cardiac ROS generation. ER stress is proposed the link between ROS and cell apoptosis; the signaling pathways and their roles in participating ER stress- induced apoptosis in DCM are still unclear. As an independent risk factor, hyperglycemia in DM is responsible for various cardiovascular complications. Risk and morbidity of developing congestive heart failure increased significantly [3,4]. Apoptosis of cardiomyocytes is considered as a key pathological change in DCM [5]. It is believed that cardiomyocyte apoptosis increased in hearts from streptozotocin (STZ)- induced diabetic animals [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call