Abstract

An ATP-regulated inwardly rectifying K(+) channel, whose activity is enhanced by PKA, is present in the plasma membrane of cultured human proximal tubule cells. In this study, we investigated the effects of PKG on this K(+) channel, using the patch-clamp technique. In cell-attached patches, bath application of a membrane-permeant cGMP analog, 8-bromoguanosine 3',5'-monophosphate (8-BrcGMP; 100 microM), stimulated channel activity, whereas application of a PKG-specific inhibitor, KT-5823 (1 microM), reduced the activity. Channel activation induced by 8-BrcGMP was observed even in the presence of a PKA-specific inhibitor, KT-5720 (500 nM), which was abolished by KT-5823. Direct effects of cGMP and PKG were examined with inside-out patches in the presence of 1 mM MgATP. Although cytoplasmic cGMP (100 microM) alone had little effect on channel activity, subsequent addition of PKG (500 U/ml) enhanced it. Furthermore, bath application of atrial natriuretic peptide (ANP; 20 nM) in cell-attached patches stimulated channel activity, which was blocked by KT-5823. In conclusion, cGMP/PKG-dependent processes participate in activating the ATP-regulated K(+) channel and producing the stimulatory effect of ANP on channel activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.