Abstract

Regulation of atrial release of atrial natriuretic peptide (ANP) is coupled to changes in atrial dynamics. However, the mechanism by which mechanical stretch controls myocytic ANP release must be defined. The purpose of this study was to define the mechanism by which cAMP controls myocytic ANP release in perfused, beating rabbit atria. The cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX) inhibited myocytic ANP release. The activation of adenylyl cyclase with forskolin inhibited ANP release, which was a function of an increase in cAMP production. Inhibitors for L-type Ca(2+) channels and protein kinase A (PKA) attenuated a minor portion of the forskolin-induced inhibition of ANP release. Gö-6976 and KN-62, which are specific inhibitors for protein kinase C-alpha and Ca(2+)/calmodulin kinase, respectively, failed to modulate forskolin-induced inhibition of ANP release. The nonspecific protein kinase inhibitor staurosporine blocked forskolin-induced inhibition of ANP release in a dose-dependent manner. Staurosporine but not nifedipine shifted the relationship between cAMP and ANP release. Inhibitors for L-type Ca(2+) channels and PKA and staurosporine blocked forskolin-induced accentuation of atrial dynamics. These results suggest that cAMP inhibits atrial myocytic release of ANP via protein kinase-dependent and L-type Ca(2+)-channel-dependent and -independent signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.