Abstract
Objective:The present study aimed to explore the correlation of protein kinase D 1 with prognosis in bortezomib-treated multiple myeloma patients and further investigate the effect of protein kinase D 1 knockdown on drug sensitivity to bortezomib in multiple myeloma cells.Methods:Totally, 104 de novo symptomatic multiple myeloma patients treated with bortezomib-based regimens and 30 healthy controls were recruited. Bone marrow mononuclear cells–derived plasma cells were collected from multiple myeloma patients before initial treatment and from healthy controls on the bone marrow donation, respectively, then protein kinase D 1 protein/messenger RNA expressions were detected by Western blot and reverse transcription quantitative polymerase chain reaction, respectively. The effect of protein kinase D 1 knockdown on drug sensitivity to bortezomib was detected by transfecting protein kinase D 1 knockdown plasmid and control plasmid into RPMI8226 and U266 cells.Results:Protein kinase D 1 protein/messenger RNA expressions were both upregulated in multiple myeloma patients compared with healthy controls and presented good value in differentiating multiple myeloma patients from healthy controls. Furthermore, protein kinase D 1 protein/messenger RNA expressions were both associated with high International Staging System stage and t (4; 14). Furthermore, both complete response rate and overall response rate were reduced in protein kinase D 1 high patients compared with protein kinase D 1 low patients; similarly, progression-free survival and overall survival were both decreased in protein kinase D 1 high patients compared with protein kinase D 1 low patients. In addition, in RPMI8226 and U266 multiple myeloma cells, protein kinase D 1 knockdown increased drug sensitivity to bortezomib.Conclusion:Protein kinase D 1 has the potential to predict poor treatment response and unfavorable survival of bortezomib-based treatment in multiple myeloma patients, and its knockdown enhanced drug sensitivity to bortezomib in multiple myeloma cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.