Abstract

Murine double-minute clone 2 protein (MDM2) is an E3 ubiquitin ligase that regulates the turnover of several cellular factors including the p53 tumor suppressor protein. As part of the mechanism of p53 induction in response to DNA damage, a cluster of serine residues within the central acidic domain of MDM2 become hypophosphorylated, leading to attenuation of MDM2-mediated p53 destruction. In the present study, we identify the protein kinase CK1delta as a major cellular activity that phosphorylates MDM2. Amino acid substitution, coupled with phosphopeptide analyses, indicates that several serine residues in the acidic domain, including Ser-240, Ser-242, and Ser-246, as well as Ser-383 in the C-terminal region, are phosphorylated by CK1delta in vitro. We also show, through expression of a dominant negative mutant of CK1delta or treatment of cells with IC261, a CK1delta-selective inhibitor, that MDM2 is phosphorylated by CK1delta in cultured cells. These data establish the identity of a key signaling molecule that promotes the phosphorylation of a major regulatory region in MDM2 under normal growth conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.