Abstract
In cultured bovine adrenal chromaffin cells, our [3H]saxitoxin ([3H]STX) binding, immunoblot, and northern blot analyses specified protein kinase C (PKC) isoform-specific posttranscriptional and posttranslational mechanisms that direct down-regulation of cell surface Na channels. Immunoblot analysis showed that among 11 PKC isoforms, adrenal chromaffin cells contained only conventional (c)PKC-alpha, novel (n)PKC-epsilon, and atypical (a)PKC-zeta. Treatment of adrenal chromaffin cells with 100 nM 12-O-tetradecanoylphorbol 13-acetate (TPA) or 100 nM phorbol 12,13-dibutyrate (PDBu) caused a rapid (<15 min) and sustained (>15 h) translocation of PKC-alpha and -epsilon (but not -zeta) from cytosol to membranes, whereas a biologically inactive 4alpha-TPA had no effect. Thymeleatoxin (TMX), an activator of cPKC, produced similar membrane association of only PKC-alpha at 100 nM, with the potency of TMX being comparable with those of TPA and PDBu. Treatment with either 100 nM TPA or 100 nM TMX reduced cell surface [3H]STX binding to a comparable extent at 3, 6, and 12 h, whereas TPA lowered the binding to a greater extent than TMX at 15, 18, and 24 h; at 15 h, Gö6976, a specific inhibitor of cPKC, completely blocked TMX-induced decrease of [3H]STX binding while preventing by merely 57% TPA-induced decrease of [3H]STX binding. Treatment with 100 nM TPA lowered the Na channel alpha-subunit mRNA level between 3 and 12 h, with its maximum 52% fall at 6 h, and it was accompanied by a subsequent 61 % rise of the beta1-subunit mRNA level at 24 h. Gö6976 failed to prevent TPA-induced reduction of the alpha-subunit mRNA level; TMX did not change the alpha- and beta1-subunit mRNA levels throughout the 24-h treatment. Brefeldin A, an inhibitor of vesicular exit from the trans-Golgi network, augmented TPA- and TMX-induced decrease of [3H]STX binding at 1 and 3 h. Our previous and present studies suggest that PKC down-regulates cell surface Na channels without altering the allosteric gating of Na channels via PKC isoform-specific mechanisms; cPKC-alpha promotes Na channel internalization, whereas nPKC-epsilon decreases the alpha-subunit mRNA level by shortening the half-life of alpha-subunit mRNA without changing its gene transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.