Abstract

Generation of superoxide anion by the multiprotein complex NADPH phagocyte oxidase is accompanied by extensive phosphorylation of its 47-kDa protein component, p47(phox), a major cytosolic component of this oxidase. Protein kinase C zeta (PKC zeta), an atypical PKC isoform expressed abundantly in human polymorphonuclear leukocytes (PMN), translocates to the PMN plasma membrane upon stimulation by the chemoattractant fMLP. We investigated the role of PKC zeta in p47(phox) phosphorylation and in superoxide anion production by human PMN. In vitro incubation of recombinant p47(phox) with recombinant PKC zeta induced a time- and concentration-dependent phosphorylation of p47(phox) with an apparent K(m) value of 2 microM. Phosphopeptide mapping analysis of p47(phox) showed that PKC zeta phosphorylated fewer selective sites in comparison to "conventional" PKCs. Serine 303/304 and serine 315 were identified as targets of PKC zeta by site-directed mutagenesis. Stimulation of PMN by fMLP induced a rapid and sustained plasma membrane translocation of PKC zeta that correlated to that of p47(phox). A cell-permeant-specific peptide antagonist of PKC zeta inhibited both fMLP-induced phosphorylation of p47(phox) and its membrane translocation. The antagonist also inhibited the fMLP-induced production of oxidant (IC(50) of 10 microM), but not that induced by PMA. The inhibition of PKC zeta expression in HL-60 neutrophil-like cells using antisense oligonucleotides (5 and 10 microM) inhibited fMLP-promoted oxidant production (27 and 50%, respectively), but not that induced by PMA. In conclusion, p47(phox) is a substrate for PKC zeta and participates in the signaling cascade between fMLP receptors and NADPH oxidase activation.

Highlights

  • Generation of superoxide anion by the multiprotein complex NADPH phagocyte oxidase is accompanied by extensive phosphorylation of its 47-kDa protein component, p47phox, a major cytosolic component of this oxidase

  • The contribution of protein kinase C (PKC) ␨ to the respiratory burst has not been documented so far, it has been shown that PKC ␨ translocates to the plasma membrane and that its activity is increased in fMLP-stimulated polymorphonuclear leukocytes (PMN) [31,32,33]

  • We and others have reported that PKC ␨ is expressed in human neutrophils and translocates to the plasma membranes upon PMN activation [23, 24, 31, 32]

Read more

Summary

Introduction

Generation of superoxide anion by the multiprotein complex NADPH phagocyte oxidase is accompanied by extensive phosphorylation of its 47-kDa protein component, p47phox, a major cytosolic component of this oxidase. Protein kinase C ␨ (PKC ␨), an atypical PKC isoform expressed abundantly in human polymorphonuclear leukocytes (PMN), translocates to the PMN plasma membrane upon stimulation by the chemoattractant fMLP. We investigated the role of PKC ␨ in p47phox phosphorylation and in superoxide anion production by human PMN. Stimulation of PMN by fMLP induced a rapid and sustained plasma membrane translocation of PKC ␨ that correlated to that of p47phox. A cell-permeant-specific peptide antagonist of PKC ␨ inhibited both fMLP-induced phosphorylation of p47phox and its membrane translocation. The contribution of PKC ␨ to the respiratory burst has not been documented so far, it has been shown that PKC ␨ translocates to the plasma membrane and that its activity is increased in fMLP-stimulated PMN [31,32,33]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call