Abstract

The serine/threonine-specific protein kinase C (PKC)-θ is predominantly expressed in T cells and localizes to the center of the immunological synapse upon T cell receptor (TCR) and CD28 signaling. T cells deficient in PKC-θ exhibit reduced interleukin (IL)-2 production and proliferative responses in vitro, however, its significance in vivo remains unclear. We found that pkc-θ− / − mice were protected from pulmonary allergic hypersensitivity responses such as airway hyperresponsiveness, eosinophilia, and immunoglobulin E production to inhaled allergen. Furthermore, T helper (Th)2 cell immune responses against Nippostrongylus brasiliensis were severely impaired in pkc-θ− / − mice. In striking contrast, pkc-θ− / − mice on both the C57BL/6 background and the normally susceptible BALB/c background mounted protective Th1 immune responses and were resistant against infection with Leishmania major. Using in vitro TCR transgenic T cell–dendritic cell coculture systems and antigen concentration-dependent Th polarization, PKC-θ–deficient T cells were found to differentiate into Th1 cells after activation with high concentrations of specific peptide, but to have compromised Th2 development at low antigen concentration. The addition of IL-2 partially reconstituted Th2 development in pkc-θ− / − T cells, consistent with an important role for this cytokine in Th2 polarization. Taken together, our results reveal a central role for PKC-θ signaling during Th2 responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.