Abstract
Cellular adhesion and spreading are critical components involved in the processes of cell and tissue development, and immune responses in molluscs, but at present, little is known regarding the signaling pathways involved in these basic cellular functions. In the present study, the molluscan Biomphalaria glabrata embryonic (Bge) cell line was used as an in vitro model to study the signal transduction pathways regulating molluscan cell adhesion and spreading behavior. Western blot analysis using antibodies specific to mitogen-activated protein kinase (MAPK) revealed the presence of an MAPK-like immunoreactive protein in Bge cells, that was phosphorylated upon exposure to phorbol myristate acetate (PMA). Moreover, Bge cell treatment with inhibitors of protein kinase C (PKC), Ras and MAPK kinase (Mek) suppressed PMA-induced expression of activated MAPK, suggesting that PKC-, Ras- and Mek-like molecules may be acting upstream of MAPK. Similarly, in vitro Bge cell-spreading assays were performed in conjunction with the same panel of inhibitors to determine the potential involvement of PKC, Ras and Mek in cellular adhesion/spreading. Results revealed a similar pattern of inhibition of cell-spreading behavior strongly implying that the Bge cell spreading also may be regulated through a MAPK-associated signal transduction pathway(s) involving proteins similar to PKC, Ras and Mek.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.