Abstract

The aim of this study was to determine whether protein kinase C-epsilon (PKC-epsilon) is involved in the repair of mitochondrial function and/or active Na+ transport after oxidant injury in renal proximal tubular cells (RPTC). Sublethal injury was produced in primary cultures of RPTC using tert-butylhydroperoxide (TBHP), and the recovery of functions was examined. PKC-epsilon was activated three- to fivefold after injury. Active PKC-epsilon translocated to the mitochondria. Basal oxygen consumption (Qo2), uncoupled Qo2, and ATP production decreased 58, 60, and 41%, respectively, at 4 h and recovered by day 4 after injury. At 4 h, complex I-coupled respiration decreased 50% but complex II- and IV-coupled respirations were unchanged. Inhibition of PKC-epsilon translocation using a peptide selective inhibitor, PKC-epsilonV1-2, reduced decreases in basal and uncoupled Qo2 values and increased complex I-linked respiration in TBHP-injured RPTC at 4 h of recovery. Furthermore, PKC-epsilonV1-2 prevented decreases in ATP production in injured RPTC. Na+-K+-ATPase activity and ouabain-sensitive 86Rb+ uptake were decreased by 60 and 53%, respectively, at 4 h of recovery. Inhibition of PKC-epsilon activation prevented a decline in Na+-K+-ATPase activity and reduced decreases in ouabain-sensitive 86Rb+ uptake. We conclude that during early repair after oxidant injury in RPTC 1) PKC-epsilon is activated and translocated to mitochondria; 2) PKC-epsilon activation decreases mitochondrial respiration, electron transport rate, and ATP production by reducing complex I-linked respiration; and 3) PKC-epsilon mediates decreases in active Na+ transport and Na+-K+-ATPase activity. These data show that PKC-epsilon activation after oxidant injury in RPTC is involved in the decreases in mitochondrial function and active Na+ transport and that inhibition of PKC-epsilon activation promotes the repair of these functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.