Abstract

BackgroundThe protein kinase C (PKC) is a family of serine/threonine kinases that consists of 12 different isoforms. Since PKC isoform expressions are known to be specific for different cell types and postnatal developmental stages, we aimed to determine immunolocalizations and protein expression levels of different PKC isoforms in pre-pubertal, pubertal and adult mouse ovaries.MethodsOvaries were obtained from postnatal day 1 (PND1) and PND7 of pre-pubertal, PND21 of pubertal and PND60 of adult mice. Immunolocalizations of PKCα, PKCδ and PKCε isoforms were determined and immunostainings in different cellular components of all follicular stages were evaluated by H-Score. PKCα, PKCδ and PKCε protein expression levels were determined by Western blot. The bands were quantified via ImageJ software. The data obtained from H-Score and ImageJ evaluations were analyzed by ANOVA statistical test.ResultsPKCα immunostainings were more intense in oocytes when compared to granulosa and theca cells at different follicular stages of all groups. The Western blot analysis revealed that PKCα expression was significantly higher in PND60 adult ovaries. Conversely, PKCδ immunostainings were more intense in granulosa cells. According to the Western blot analysis, PKCδ protein expression was also higher in PND60 and significantly lower in PND1 ovaries. PKCε immunostaining was more apparent in oocytes. PKCε protein expression was significantly higher in adult PND60 and pubertal PND21 ovaries when compared to pre-pubertal PND7 and PND1 ovaries. Interestingly, PKCε immunostaining was significantly higher in primordial follicles, though PKCα and PKCδ immunostainings were more apparent in larger follicles. PKCα immunostainings of corpora lutea (CL) were significantly higher when compared to follicles in PND60 ovaries.ConclusionsThis study demonstrates that PKCα, PKCδ and PKCε isoforms are differentially expressed in particular cellular components of pre-pubertal, pubertal and adult mouse ovarian follicles. Therefore, we suggest that each PKC isoform has unique functions that are controlled by gonadotropin dependent mechanisms during follicular growth, oocyte maturation, ovulation and luteinization.

Highlights

  • The protein kinase C (PKC) is a family of serine/threonine kinases that consists of 12 different isoforms

  • Higher immunostaining of PKCα was detected in corpus luteum (CL) when compared to follicles at different stages of development in PND60 ovaries

  • In postnatal day 1 (PND1) ovary, though primordial follicle PKCα immunostaining level was higher than primary follicle (Figures 1.c3, 2B), this difference was not significant

Read more

Summary

Introduction

The protein kinase C (PKC) is a family of serine/threonine kinases that consists of 12 different isoforms. Since PKC isoform expressions are known to be specific for different cell types and postnatal developmental stages, we aimed to determine immunolocalizations and protein expression levels of different PKC isoforms in pre-pubertal, pubertal and adult mouse ovaries. Main ovarian functions related to female fertility include folliculogenesis, oocyte maturation, ovulation and luteinization processes consecutively controlled by gonadotropin induced signal transduction pathways. The activation of these pathways shows difference between pre-pubertal, As reviewed by Richards J. et al [1], particular signaling components show variable expression levels in ovarian follicles at different stages and corpus luteum (CL). PKC family consists of 12 different isoforms that show difference in terms of amino acid sequences of specific domains [4]. Earlier studies documented the importance of PKC in several physiological processes in ovary such as granulosa cell proliferation for follicular growth [10], oocyte maturation [11], ovulation [6] and luteinization [12]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.