Abstract

Protein kinase C (PKC) has been known to play an important role in ischemic preconditioning (IP). This study was designed to examine whether the translocation of PKC is associated with the cardioprotective effects of IP in vivo on infarct size and ventricular arrhythmias in a rat model. Using anesthetized rats, heart rate, systolic blood pressure, infarct size and ventricular arrhythmias during 45 min of coronary occlusion were measured. PKC activity was assayed in both the cytosolic and cell membrane fraction. Brief 3-min periods ofischemia followed by 10 min ofreperfusion were used to precondition the myocardium. Calphostin C was used to inhibit PKC. Infarct size was significantly reduced by IP (68.1 (2.5)%, mean (S.E.) vs. 45.2 (3.4)%, p < 0.01). The reduction in infarct size by IP was abolished by pretreatment with calphostin C. The total number of ventricular premature complex (VPC) during 45 min of coronary occlusion was reduced by IP (1474 (169) beats/45 min vs. 256 (82) beats/45 min, p < 0.05). The reduction the total number of VPC induced by IP was abolished by the administration of calphostin C before the episode of brief ischemia. The same tendency was observed in the duration of ventricular tachycardia and the incidence of ventricular fibrillation. PKC activity in the cell membrane fraction transiently increased immediately after IP (100 vs. 142%, p < 0.01) and returned to baseline 15 min after IP. Pretreatment with calphostin C prevented the translocation of PKC. The translocation of PKC plays an important role in the cardioprotective effect of IP on infarct size and ventricular arrhythmias in anesthetized rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call